Binomial Probabilities

- » Exact binomial probabilities
- » Approximation via the normal distribution
- » Approximation via the Poisson Distribution

The logic and computational details of binomial probabilities are described in Chapters 5 and 6 of <u>Concepts and Applications</u>.

This unit will calculate and/or estimate binomial probabilities for situations of the general "k out of n" type, where k is the number of times a binomial outcome is observed or stipulated to occur, p is the probability that the outcome will occur on any particular occasion, q is the complementary probability (1-p) that the outcome will not occur on any particular occasion, and n is the number of occasions.

For example: In 100 tosses of a coin, with 60 "heads" outcomes observed or stipulated to occur among the 100 tosses,

- **n** = 100 [the number of opportunities for a head to occur]
- **k** = 60 [the stipulated number of heads]
- **p** = .5 [the probability that a head will occur on any particular toss]
- **q** = .5 [the probability that a head will not occur on any particular toss]

Show Description of Methods

To proceed, enter the values for \mathbf{n} , \mathbf{k} , and \mathbf{p} into the designated cells below, and then click the «Calculate» button. (The value of \mathbf{q} will be calculated and entered automatically). The value entered for \mathbf{p} can be either a decimal fraction such as .25 or a common fraction such as 1/4. Whenever possible, it is better to enter the common fraction rather than a rounded decimal fraction: 1/3 rather than .3333; 1/6 rather than .1667; and so forth.

n	k	р	q
30	0	0.1	0.9
	Calculate	Reset	

Parameters of binomial sampling distribution:

```
mean = 3
variance = 2.7
standard deviation = 1.6432
binomial z-ratio = (if applicable)
```

P: exactly 0 out of 30				
Method 1. exact binomial calculation	0.042391158275			
Method 2. approximation via normal				
Method 3. approximation via Poisson				
P: 0 or fewer out of 30				
Method 1. exact binomial calculation	0.042391158275			
Method 2. approximation via normal				
Method 3. approximation via Poisson				
P: 0 or more out of 30				
Method 1. exact binomial calculation	1.0			
Method 2. approximation via normal				
Method 3. approximation via Poisson				

P: 0 or fewer out of 30

For hypothesis testing	One-Tail	Two-Tail
Method 1. exact binomial calculation	0.042391158275	0.08478231655
Method 2. approximation via normal		
Method 3. approximation via Poisson		

Home Click this link **only** if you did not arrive here via the VassarStats main page.

© Richard Lowry 2001-2012 All rights reserved. **Binomial Probabilities**