Binomial Probabilities

» Exact binomial probabilities
» Approximation via the normal distribution
» Approximation via the Poisson Distribution

The logic and computational details of binomial probabilities are described in Chapters 5 and 6 of Concepts and Applications.

This unit will calculate and/or estimate binomial probabilities for situations of the general " k out of n " type, where k is the number of times a binomial outcome is observed or stipulated to occur, p is the probability that the outcome will occur on any particular occasion, q is the complementary probability (1-p) that the outcome will not occur on any particular occasion, and n is the number of occasions.

For example: In 100 tosses of a coin, with 60 "heads" outcomes observed or stipulated to occur among the 100 tosses,

```
n = 100[the number of opportunities for a head to occur]
k = 60 [the stipulated number of heads]
p = . 5 [the probability that a head will occur on any particular toss]
q = .5 [the probability that a head will not occur on any particular toss]
```


Show Description of Methods

To proceed, enter the values for \mathbf{n}, \mathbf{k}, and \mathbf{p} into the designated cells below, and then click the «Calculate» button. (The value of \mathbf{q} will be calculated and entered automatically). The value entered for \mathbf{p} can be either a decimal fraction such as .25 or a common fraction such as $1 / 4$. Whenever possible, it is better to enter the common fraction rather than a rounded decimal fraction: $1 / 3$ rather than .3333; $1 / 6$ rather than .1667; and so forth.

\mathbf{n}	\mathbf{k}	\mathbf{p}	\mathbf{q}
$\mathbf{3 0}$	$\mathbf{0}$	0.1	0.9

Calculate
 Reset

Parameters of binomial sampling distribution:

```
        mean = 3
    variance = 2.7
standard deviation = 1.6432
binomial z-ratio =
\begin{tabular}{|l|l|}
\hline \multicolumn{3}{|c|}{ P: exactly 0 out of 30} \\
\hline Method 1. exact binomial calculation & 0.042391158275 \\
\hline Method 2. approximation via normal & \\
\hline Method 3. approximation via Poisson & \\
\hline \multicolumn{2}{|r|}{ P: 0 or fewer out of 30} \\
\hline Method 1. exact binomial calculation & 0.042391158275 \\
\hline Method 2. approximation via normal & \\
\hline Method 3. approximation via Poisson & \\
\hline \multicolumn{3}{|r|}{ P: 0 or more out of 30} \\
\hline Method 1. exact binomial calculation & 1.0 \\
\hline Method 2. approximation via normal & \\
\hline Method 3. approximation via Poisson & \\
\hline
\end{tabular}

P: 0 or fewer out of 30
\begin{tabular}{|l|c|c|}
\cline { 2 - 3 } & \multicolumn{1}{c|}{ One-Tail } & Two-Tail \\
\hline For hypothesis testing & Thod 1. exact binomial calculation & 0.042391158275 \\
\hline Method 2. approximation via normal & & 0.08478231655 \\
\hline Method 3. approximation via Poisson & & \\
\hline
\end{tabular}

Home Click this link only if you did not arrive here via the VassarStats main page.
© Richard Lowry 2001-2012
All rights reserved.```

